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Abstract—Cost-effective storage and timely transmission of 
medical images are very difficult technical challenges. 
Compression and reconstruction techniques must guarantee no 
significant loss of clinical information. This paper presents a 
convenient technique for improving the quality of reconstructed 
computed tomography (CT) images previously subjected to 
specified levels of lossy compression. Our genetic algorithm (GA) 
evolves novel transforms that consistently outperform state-of-
the-art wavelet-based schemes supported by the Digital Imaging 
and Communication in Medicine (DICOM) standard.  
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I. INTRODUCTION 
Raw, uncompressed medical images require an enormous 

volume of storage space [6]. In addition, the time required to 
electronically transfer medical images over broadband 
networks is often unacceptable [13]. Lossy compression 
techniques may be employed to substantially reduce image 
size. Unfortunately, such techniques also introduce permanent 
and irreversible information loss in proportion to the amount 
of compression. Recent studies (e.g., [14]) have established 
medically acceptable compression ratios of between 8:1 and 
15:1 for small images (including computed tomography [CT], 
ultrasound [US], nuclear medicine [NM], and magnetic 
resonance imaging [MRI]), and between 20:1 and 30:1 for 
large images (including computed and digital radiography 
[CR/DR]). 

The JPEG2000 (J2K) digital image compression standard 
[26] has achieved worldwide acceptance as the state-of-the-art 
methodology for compressing and reconstructing medical 
images [9]. The current Digital Imaging and Communication 
in Medicine (DICOM) standard provides direct support for 
J2K image compression [23], and this support has the potential 
to substantially reduce the massive storage and 
communications requirements of modern Picture Archiving 
and Communication Systems (PACS). For lossy image 
compression, J2K utilizes the biorthogonal 9/7 wavelet 
transform [7]. The 9/7 achieves very high compression ratios 
without introducing the excessive noise and blocking artifacts 
of older standards (e.g., JPEG). 

Wavelet-based image compression schemes [29] 
implement the following algorithm: 

Step 1: Use a two-dimensional (2D) wavelet transform to 
decompose a given image f into a trend subimage a 
and subimages h, v, and d representing the 
horizontal, vertical, and diagonal fluctuation. If using 
multiresolution analysis (MRA) to perform a k-level 
transform, this process will be recursively reapplied 
to the previous trend subimage. 

Step 2: Perform thresholding and quantization to reduce the 
size of the transformed signal. Thresholding [17] is 
the process of retaining only the largest transformed 
values and setting the less significant values to zero; 
the compressed signal will thus contain significant 
(non-zero) quantized values, along with a 
significance map indicating their indices. 
Quantization [27] is the process representing each 
signal value using a relatively smaller number of bits 
(e.g., quantization to an 8-bit signal allows 256 
possible values). K:1 uniform scalar quantization 
maps intervals of width K onto a single quantized 
value; for example, 64:1 quantization might map 
values in the range {0, 1, …, 63} to 0, {64, 65, …, 
127} to 1, {128, 129, …, 191} to 2, and so on.  

Step 3: Transmit the compressed image, which will be much 
smaller than the original image f. 

On the receiving end, the compressed image will be 
dequantized: first, each value is multiplied by the quantization 
step K, and then half the quantization step will be added to the 
result. For example, at 64:1 quantization, quantized value 1 
might be dequantized to 96, which is the midpoint of the range 
of values from the original image that might have been 
quantized to 1. This process of adding half the quantization 
step back to the dequantized value has the effect of 
minimizing the average quantization error (assuming that all 
possible values are equally likely). After dequantization, an 
inverse 2D wavelet transform will create an approximation of 
the original image. The difference between the original image 
and the reconstructed image will primarily be the result of 
quantization error. 



Wavelets [8] are defined using two sets of numbers, known 
as scaling and wavelet numbers. For the 9/7 inverse 
(reconstruction) transform, the scaling (h2) and wavelet (g2) 
numbers defining the low-pass and high-pass synthesis filters 
(rounded to four decimal places) are  

h2 = [-0.0645, -0.0407, 0.4181, 0.7885, 0.4181, 
  -0.0407, -0.0645] 

g2 = [0.0378, 0.0239, -0.1106, -0.3774, 0.8527, 
-0.3774, -0.1106, 0.0239, 0.0378] 

Since 2004, several researchers have used various forms of 
evolutionary computation (EC), including genetic algorithms 
(GAs) [10], to evolve sets of wavelet and scaling numbers 
describing new transforms capable of reducing the mean 
squared error (MSE) observed in reconstructed signals 
subjected to quantization error, while continuing to match or 
exceed the compression capabilities of standard wavelet 
transforms. Grasemann and Mikkulainen ([11], [12]) 
combined a GA with the lifting scheme [25] to synthesize new 
wavelet transforms from an existing wavelet filter; the new 
wavelets exhibited improved performance for specific classes 
of images. Moore [21] used a GA to optimize image 
reconstruction transforms; his technique differed from that of 
Grasemann and Mikkulainen, however, in that it did not 
impose specific mathematical properties required of wavelets 
(such as conservation of energy) upon the evolved solutions. 
The resulting transforms exhibited modest improvements over 
wavelet reconstruction transforms at various quantization 
levels. Babb, Becke, and Moore [2] expanded upon this 
technique by simultaneously evolving matched compression 
and reconstruction transform pairs, and added the capability of 
evolving multiresolution analysis (MRA) transforms [20]. 
Their approach seeded the initial population with one exact 
copy and many randomly mutated copies of a selected 
wavelet; thus, each of the transforms in the evolving 
population had the same structure as the wavelet, but 
contained wavelet and scaling numbers optimized by the GA. 
For MRA transforms [17], these researchers found it 
advantageous to evolve different coefficients at every 
multiresolution level; evolving a four-level matched 
compression and reconstruction transform having the same 
structure as the 9/7, for example, requires simultaneous 
optimization of 128 floating-point numbers, resulting in a 
considerably large and complex search space. 

To date, researchers have successfully optimized 
transforms that outperform wavelets in each of the following 
lossy image compression domains for which wavelets were 
previously considered state-of-the-art: 
(a) Digital photographs, such as the classic “Lenna”, 

“Goldhill”, “Airplane”, and “Baboon” [21]. 
(b) Fingerprints from the US Federal Bureau of Investigation 

(FBI) database [3]. 
(c) Satellite images such as “Downtown Baghdad”, “Air 

Force Museum”, and “Pearl Harbor” ([5], [4]). 
(d) Images of the planet Mars transmitted from rovers 

“Spirit” and “Opportunity” [1]. 
(e) US images [18]. This study appears to have been the first 

time that an EC-based approach has been used to evolve 

optimized image reconstruction transforms specifically 
for a medical imaging application. The results of this 
study were very encouraging, with MSE reductions as 
high as 53.44% (3.32 dB) in comparison to the 9/7 at 64:1 
quantization.  

II. CT IMAGES 
The data storage needs of medical facilities are growing at 

an annual rate exceeding 50%, with most of that need being 
driven by image storage [28]. In 2010, approximately 72 
million computed tomography (CT) scans were performed in 
the United States [19]. Assuming 16-bit resolution, the size of 
a single 512-by-512-pixel computed tomography (CT) image 
slice is about 0.5 megabyte (MB); a typical CT image consists 
of about 200 slices, making the average total size of a single 
CT scan about 100 MB [30]. Retrieval of a CT scan, even at 
the same hospital, may take as long as 15 minutes [16]. In 
addition, widespread use of teleradiology and telemedicine 
necessitate the availability of high-speed, secure medical 
image transmission technology [24]. 

III. EXPERIMENTS AND RESULTS 
The primary question addressed by this research is: 

Can EC be used to optimize compression transforms that 
outperform the 9/7 wavelet for the lossy compression of 
CT scans? 

To begin answering this question, we conducted a series of 
experiments using a GA characterized as follows: 
(a) Population size M = 200. 
(b) Maximum number of generations G = 5000, with early 

termination after 250 generations with no improvement 
over the current best-of-run individual. 

(c) Crossover percentage pc = 80%. 
(d) Mutation percentage pm = 20% per individual. For each 

individual selected for mutation, each wavelet and scaling 
number had a 10% likelihood of undergoing mutation. 
Mutation was Gaussian with Standard deviation = 0.3 and 
shrink rate = 1. 

(e) Elitism = 1 (i.e., the best individual from each generation 
was copied, unchanged, into the next generation, thus 
guaranteeing no decrease in the best individual’s fitness 
from one generation to the next). 

(f) Each candidate solution consisted of 16 floating-point 
values. The initial population for each run (generation 0) 
was seeded with one exact copy and M-1 randomly 
mutated copies of the scaling and wavelet numbers from 
the 9/7 wavelet’s reconstruction transform. 

Note that these settings are identical to those used to evolve 
optimized transforms for US image reconstruction [18].  

We conducted three sets of training runs using a 
quantization step of 16:1, 32:1, and 64:1, respectively. Each 
training run used a unique combination of training image (a 
single randomly selected CT image slice) and random number 
seed. Each run ran to quiescence, producing a unique best-of-
run transform. Each best-of-run transform was subsequently 
tested on the remaining image slices from the test set (a 
technique similar to “leave-1-out” cross validation [15]). The 



specific CT scan used in this research consisted of a set of 30 
noncontrast axial brain images taken at Alaska Regional 
Hospital for diagnosis of a potentially severe medical 
emergency. 

Fig. 1 lists the training image used, the amount of 
quantization used during training, and the best-of-run 
individual’s average MSE reduction (in comparison to the 9/7 
wavelet) when subsequently tested against the remaining 29 
images from the test set at under conditions subject to 16:1, 
32:1, and 64:1 quantization. Fig. 2 shows a typical image from 
the test set (m4.bmp). Fig. 3 illustrates the same image after 
compression by the 9/7 forward transform, 32:1 quantization, 
dequantization, and reconstruction by the 9/7 inverse 
transform. Fig. 4 shows the image after reconstruction by an 
evolved transform. 

For this image, the best evolved transform (from run 18) 
reduced MSE by 12.65% (0.59 dB) in comparison to the 9/7’s 
reconstructed image. Unfortunately, differences of this 
magnitude are difficult to discern with the naked eye. To more 
effectively visualize the superiority of the evolved transform, 
we developed MATLAB scripts to create error images 
according to the following algorithm: 
1. Calculate raw error as the difference between the two 

images. 
2. Multiply raw error by 4 to emphasize it. 
3. Add 128 to all values, shifting from range -128…127 to 

range 0…255. 
4. Apply a custom color map that is symmetric around 128. 

Pixels with zero error will equal 128. The further away a 
pixel is from this value, the greater its error. Errors 
increase from white to yellow to red to black. 

 
 Training Training  Testing Quantization 
Run Image Quantization Q = 16:1 Q = 32:1 Q = 64:1 
1 m4 16:1 -5.42% 3.90% -6.49% 
2 m4 16:1 -3.36% 4.22% -3.01% 
3 m4 16:1 -3.46% 4.22% 0.47% 
4 m7 16:1 4.39% 4.21% -3.16% 
5 m7 16:1 4.36% 3.88% -9.12% 
6 m7 16:1 4.28% 3.86% -9.11% 
7 m11 16:1 -75.09% -13.20% 5.48% 
8 m11 16:1 -64.84% -8.12% 5.73% 
9 m11 16:1 -86.71% -15.92% 5.63% 
10 m4 32:1 -27.03% 1.43% -10.45% 
11 m4 32:1 -23.40% 3.16% -10.41% 
12 m4 32:1 -25.39% 2.31% -10.29% 
13 m5 32:1 -24.41% 3.12% -10.24% 
14 m5 32:1 -20.79% 4.27% -10.06% 
15 m5 32:1 -22.99% 4.21% -9.15% 
16 m7 32:1 -16.51% 5.25% 1.45% 
17 m7 32:1 -17.71% 5.03% -3.77% 
18 m7 32:1 -18.78% 5.13% -2.75% 
19 m11 32:1 2.86% 5.56% 3.75% 
20 m11 32:1 2.57% 5.95% 3.80% 
21 m11 32:1 -0.50% 5.74% 4.01% 
22 m17 32:1 -7.14% 4.92% 4.05% 
23 m17 32:1 -17.68% 4.36% 4.16% 
24 m17 32:1 -19.84% 4.10% 4.27% 
25 m11 64:1 -82.67% -17.72% 5.44% 
26 m11 64:1 -67.56% -9.67% 5.67% 
27 m11 64:1 -79.78% -11.86% 5.72% 
28 m15 64:1 -110.99% -26.57% 2.00% 
29 m15 64:1 -120.78% -33.22% 1.56% 
30 m15 64:1 -126.68% -36.88% 1.67% 
31 m17 64:1 -107.77% -27.17% 1.64% 
32 m17 64:1 -103.74% -23.73% 1.92% 
33 m17 64:1 -106.04% -24.65% 4.75% 

 
Figure 1. Test results for transforms evolved using specific training images and under conditions subject to specific quantization levels. 



 

 
 

Figure 2. A typical CT image. 
 
 
 
 

 
 

Figure 3. The image after reconstruction by the 9/7 wavelet. 
 

 
 

Figure 4. The image reconstructed by an evolved transform. Differences of 
this magnitude are difficult to discern with the naked eye.

The first error image (Fig. 5) shows the difference between the 
original CT image (Fig. 2) and the wavelet-reconstructed 
image (Fig. 3), while the second error image (Fig. 6) shows 
that difference for the image reconstructed by the evolved 
transform (Fig. 4). The generally lighter color of Fig. 6 (in 
comparison to Fig. 5) highlights the degree to which the 

evolved transform outperforms the wavelet for the 
reconstruction of CT images subjected to lossy compression. 

Fig. 7 visualizes the difference in MSE between the images 
produced by the wavelet and evolved filter on a pixel-by-pixel 
basis. This image was created from the wavelet error matrix 
and the evolved transform error matrix (rather than from the  



 
 

Figure 5. The difference image for the 9/7 wavelet. Darker points indicate 
greater error. 

  
 

Figure 6. The evolved transform’s difference image. Generally lighter color 
indicates less error than was introduced by the 9/7. 

 
 

 
 

Figure 7. A pixel-by-pixel visualization of the difference in errors created by the wavelet and evolved reconstruction transform. The blue pixels indicate where the 
9/7 introduced greater error, while the red pixels indicate where the evolved transform’s error was greater. 

 



  
reconstructed images) using the algorithm described above. 
Blue indicates pixels for which the 9/7 accumulated more 
error, while red indicates pixels where the evolved transform 
produced greater error. The darker the pixel, the bigger the 
difference. The larger number and darker color of blue pixels 
in Fig. 7 demonstrate the overall superiority of the evolved 
transform. 

These results appear to support the following conclusions: 
 (a) It is possible to evolve a reconstruction transform that 

outperforms the 9/7 wavelet transform for the 
reconstruction of CT images under conditions subject to a 
specified amount of quantization.  

(b) In all but one run (run 24), the performance of transforms 
optimized at 32:1 or 64:1 quantization degrades – often 
substantially – when subsequently tested at different 
quantization levels. In contrast, the performance of 
transforms optimized at 16:1 quantization was quite 
unpredictable, and often improved when tested at higher 
quantization levels. Further research will be necessary to 
explain these results. 

 (c) In only two runs (runs 19 and 20) were transforms 
evolved that outperformed the 9/7 wavelet at all three 
quantization levels. These results remind us of the 
complexity of searching for optimized solutions in a 
nonlinear, 16-dimensional floating-point space. 

(d) GAs are stochastic processes. Several runs are typically 
necessary to produce an individual whose performance 
generalizes well during subsequent testing against images 
not specifically included in the training population; many 
runs will fail to produce such an individual. Here, the 
best-of-run individuals evolved for 12 of our 45 runs were 
overtrained on the training image and failed to outperform 
the 9/7 wavelet at ANY quantization level when 
subsequently tested against the remaining 29 images from 
the test set. 

(e) MSE reductions for CT scans observed during this 
research effort were much smaller than we previously 
observed for US images. Whereas average MSE 
reductions of 15.84% (0.75 dB), 49.81% (2.99 dB), and 
53.44% (3.32 dB) were observed on the US image test set 
at 16:1, 32:1, and 64:1 quantization, respectively [18], the 
best average MSE reductions for the CT image test at 
corresponding quantization levels were only 4.39% (0.195 
dB), 5.95% (0.266 dB), and 5.72% (0.256 dB). This result 
may be due to the fact that US images tend to be quite 
“fuzzy” even before being subjected to lossy 
compression, whereas the images from a CT scan are 
much “sharper” and may be subjected to higher 
quantization levels before substantial amounts of error are 
introduced. 

IV. CONCLUSIONS 
The research summarized by this paper demonstrates that it 

is possible to use a GA to evolve wavelet and scaling numbers 
for transforms that outperform the 9/7 wavelet for the 
reconstruction of images from CT scans under conditions 

subject to quantization error. Simply put, evolved transforms 
provide better image quality at identical levels of compression. 
These results thus establish a new state-of-the-art for 
reconstructing CT scans. 

The next step in this research will be to determine the 
maximum amount of compression of CT scans that can be 
achieved by an evolved transform capable of matching the 
medically acceptable amount of noise achieved by the current 
9/7 wavelet-based standard [14]. To complete this step, many 
more runs with larger values for M and G will be required. A 
positive result would reduce the amount of storage and 
transmission bandwidth required for compressed CT scans 
without adversely affecting the overall clinical quality of those 
images. In addition, the use of multiple training images in 
future research should reduce the likelihood of overtraining. 

The predominance of blue pixels in Fig. 7 indicates that 
the evolved transform generally outperformed the wavelet. 
Nevertheless, Fig. 7 contains many red pixels indicating areas 
within the image for which the wavelet produced less error. 
These red areas tend to congregate along the sharpest edges of 
the image. Previous studies [22] have demonstrated the utility 
of using an edge detection method of evolving two filters (one 
for reconstruction near edges and one for reconstructing the 
remainder of the image). Future research should incorporate 
this technique to further enhance the performance of evolved 
transforms. 

The methodology established by the previous study [18] 
and continued during this research will be applied to other 
types of medical images (NM, MRI, CR, and DR). We 
anticipate similarly impressive results which, if achieved, 
could have a substantial impact upon state-of-the-art medical 
image compression technology. 
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