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Abstract—Most of the images transmitted from deep space 
probes to Earth are subject to lossy compression. Recent NASA 
missions (such as Mars rovers Spirit and Opportunity) have used 
the ICER progressive wavelet image compressor to achieve state-
of-the-art compression performance. The purpose of the research 
described in this paper was to demonstrate that it is possible to 
evolve wavelet and scaling numbers describing novel transforms 
that outperform the most commonly used ICER wavelet for the 
reconstruction of deep space images previously subjected to lossy 
compression. Because our technique only modifies the image 
reconstruction transform, it requires no modification of deployed 
mission hardware.  We thus present a technique to provide 
improved reconstruction of images received from existing rover 
missions. 
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I.  INTRODUCTION 
The National Aeronautics and Space Administration 

(NASA) Mars Exploration Rovers (MERs) Spirit and 
Opportunity (Fig. 1) have been a tremendous success. Since 
landing on opposite sides of the planet in January 2004, these 
rovers have been transmitting visual and infrared images of the 
Martian landscape to Earth. Scientists at NASA’s Jet 
Propulsion Laboratory (JPL) have used these images to 
discover conclusive evidence of past water activity, suggesting 
that conditions on Mars may have once been suitable for 
sustaining life. Each rover is configured with nine onboard 
cameras. The enormous amount of image data captured by 
these cameras (as of May 25, 2010, over 128,000 images) and 
the vast distance over which that data must be transmitted 
(approximately 100-380 million km) make compression 
essential. MER scientists often prefer lossy compression 
schemes because they are capable of achieving significantly 
greater compression ratios than lossless schemes; 
unfortunately, this additional compression comes at the cost of 
introducing distortion into reconstructed images. 

ICER [8] is a state-of-the-art wavelet-based progressive 
image compressor developed by Drs. Aaron Kiely and 
Matthew Klimesh at JPL specifically for deep-space imaging. 
Both MERs are relying upon ICER exclusively to perform 
lossy image compression in order to maximize return of 
scientific imagery over severely constrained deep space 
communication links. In addition, ICER is being used by the 

Sun Earth Connection Coronal and Heliospheric Investigation 
(SECCHI) instrument onboard NASA's Solar Terrestrial 
Relations Observatory (STEREO) spacecraft [12] to observe 
the solar corona and inner heliosphere from the surface of the 
Sun to the orbit of Earth, and by the Hyperion hyperspectral 
imager onboard the Earth Observing-1 (EO-1) spacecraft [13] 
to evaluate on-orbit issues for imaging spectroscopy and 
assess the capabilities of a space-based imaging spectrometer 
for earth science and earth observation missions. 

At the core of ICER is a collection of seven wavelet 
transforms. While an ICER user has the option of selecting any 
these wavelets and specifying a desired multiresolution 
analysis (MRA) decomposition level, in practice only one of 
these wavelets has seen extensive use during the current MER 
missions. The scaling (h2) and wavelet (g2) numbers defining 
the low-pass and high-pass synthesis filters for the 
reconstruction transform of this wavelet – commonly called the 
reversible 2/6 (TS) due to its simple biorthogonal structure – 
can be expressed in one of two forms: 
(a) The floating-point representation [14] consists of the 

following values (rounded to eight decimal places): 
h2 = [0.70710700, -0.70710700, 0.08838800,  

0.08838800, 0.70710678, 0.70710678] 
 

 
 

Figure 1.  Artist’s Concept of a Rover on Mars 



g2 = [-0.08838800, -0.08838800] 
 (b) An alternative integer representation [1], used onboard 

MERs to reduce computational complexity [8], consists of 
the following values: 
h2 = [1, -1, 1/8, 1/8, 1/2, 1/2] 
g2 = [-1/8, -1/8] 

Quantization [9] is the process of approximating a signal 
using a relatively smaller number of bits. Digital audio signals, 
for example, are commonly represented using either 8 bits 
(allowing one of 28 = 256 possible volume levels) or 16 bits 
(allowing 216 = 65,536 levels). Fewer bits are used when high 
fidelity may be sacrificed to improve transmission speed and 
reduce storage size. Quantization introduces permanent, 
irreversible information loss. The goal of this research project 
is to utilize genetic algorithms (GAs) to evolve wavelet and 
scaling numbers defining novel image reconstruction 
transforms that outperform the 2/6 wavelet for the 
reconstruction of deep space images that have previously 
compressed by the 2/6 and then subjected to quantization 
error. Performance of the evolved transforms will be measured 
by distortion, quantified in this research by mean squared error 
(MSE) introduced into the reconstructed images. 

II. PRIOR RESEARCH 
A series of research projects begun in 2004 has focused 

upon using EC to evolve sets of wavelet and scaling numbers 
describing new transforms capable of reducing the mean 
squared error (MSE) observed in reconstructed signals 
subjected to quantization error, while continuing to match or 
exceed the compression capabilities of wavelets. Moore [10] 
used a genetic algorithm (GA) to optimize reconstruction 
transforms only, and demonstrated modest improvements over 
wavelet reconstruction transforms at various quantization 
levels. Babb, Becke, and Moore [2] expanded this GA to 
simultaneously evolve matched compression and 
reconstruction transform pairs, and added the capability of 
evolving MRA transforms [11]. Their approach seeded the 
initial population with one exact copy and many randomly 
mutated copies of a selected wavelet; thus, each of the 
transforms in the evolving population had the same structure as 
the wavelet, but contained different wavelet and scaling 
numbers. For MRA transforms [9], it proved to be 
advantageous to evolve different coefficients at every 
multiresolution level. Evolving a four-level matched 
compression and reconstruction transform having the same 
structure as the famous 9/7 transform [5], for example, requires 
simultaneous optimization of 128 floating-point numbers, 
which is an extraordinarily difficult problem. 

In their best result to date [3], Babb et al. used selected 
satellite images for training under conditions subject to 64:1 
quantization. Their best-of-run evolved transform reduced 
MSE in reconstructed satellite images by an average of 33.78% 
(1.79 dB) in comparison to the 9/7 wavelet at a single level of 
decomposition, while maintaining the average information 
entropy (IE) – a reliable indicator of compressed file size – at 
99.57% compared to the 9/7. This transform was also evaluated 
on 80 fingerprints from the FBI fingerprint image test suite, as 
well as 18 digital photographs. At 64:1 quantization, the 

evolved transform reduced the average MSE in reconstructed 
fingerprints by 49.88% (3.00 dB) in comparison to the 9/7, but 
allowed the average IE of compressed fingerprints to increase 
to 104.36%. For the photographs, the evolved transform 
reduced average MSE by 42.35% (2.39 dB) and maintained 
average IE at 100.08% in comparison to the 9/7. These results 
indicate that their evolved transform greatly improved the 
quality of reconstructed images without substantial loss of 
compression capability over a broad range of image classes. In 
addition, their best evolved 3-level MRA transform reduced 
MSE by an average of 11.71% (0.54 dB) when applied to 50 
satellite images from their test set, while maintaining an 
average IE of 99.47% in comparison to the 9/7 wavelet under 
conditions subject to 64:1 quantization [4]. Thus, their 
approach was successfully extended to evolve MRA transforms 
that reduce MSE in reconstructed images, while continuing to 
match the compression capabilities of the 9/7. 

III. EXPERIMENTS AND RESULTS: 2/6 
For this research, the test set consisted of 50 images taken 

by five cameras aboard MER Spirit: the navigation camera 
(images 1-10), rear hazard camera (11-20), front hazard camera 
(21-30), panoramic camera (31-40), and microscopic imager 
camera (41-50). These images were transmitted to Earth under 
lossless conditions. 50 independent training runs of our GA 
were performed. Each GA run used a single MER image for 
training. Each training image was compressed by the 2/6 
wavelet’s forward transform, subjected to 64:1 quantization, 
and then dequantized.  The goal of each training run was to 
evolve a reconstruction transform that is capable of minimizing 
the MSE in reconstructed MER images. Each run used the 
following control parameters: 
(a) Population size M = 50. 
(b) Number of generations G = 500. 
(c) Crossover percentage pc = 85%. 
(d) Mutation is Gaussian with Standard deviation = 0.3 and 

Shrink rate = 1. 
(e) Elitism = 2 (i.e., the two best individuals from each 

generation are copied, unchanged, into the next 
generation, thus guaranteeing no decrease in the best 
individual’s fitness from one generation to the next). 

Each candidate solution consisted of 8 floating-point values. 
The initial population for each run (generation 0) was seeded 
with one exact copy and M-1 randomly mutated copies of the 
scaling and wavelet numbers from the 2/6 wavelet’s 
reconstruction transform. At the conclusion of each training 
run, the best-of-run optimized reconstruction transform was 
applied to compressed, quantized, and dequantized versions of 
each of the remaining images from the test set. 

The results for the five best floating-point transforms are 
tabulated in Fig. 2, while Fig. 3 shows results for the five best 
integer transforms. These results clearly support the following 
conclusions: 
(a) Our GA is capable of optimizing the wavelet and scaling 

numbers describing transforms that consistently 
outperform the 2/6 wavelet for the reconstruction of deep 
space images under conditions subject to quantization 
error.  



(b) Subject to the limited size of the training runs performed 
for this research, the GA consistently achieved greater 
improvement for the integer 2/6 transforms used by MER 
spacecraft than for more complex floating-point 2/6 
transforms. 

 
Training Image  Mean Improvement (test set) 

MER7 6.60% (0.297 dB)
MER34 6.59% (0.296 dB)
MER42 6.58% (0.296 dB)
MER2 6.54% (0.294 dB)

MER36 6.49% (0.291 dB)
 

Figure 2. Average MSE Reduction, Evolved Floating-Point Transforms 
 
 

Training Image  Mean Improvement (test set) 
MER24 9.35% (0.426 dB)
MER39 9.16% (0.417 dB)
MER47 9.00% (0.410 dB)
MER36 8.98% (0.409 dB)
MER17 8.94% (0.407 dB)

 
Figure 3.  Average MSE Reduction, Evolved Integer Transforms 

 
 
Fig. 4 shows the five best training images for floating-

point transforms, while Fig. 5 shows the five best for integer 
transforms. Note that the best images for training floating-
point transforms are typically NOT the same as the best 
images for training integer transforms: in fact, only one 
training image (MER36) ranked in the top five for both types 
of transforms. 

Fig. 6 shows the wavelet and scaling numbers comprising 
the best-of-run floating-point transform for each of the five 
training runs summarized by Fig. 2 (rounded to 4 decimal 
places), as well as the percentage change in the magnitude of 
each number relative to the corresponding value from the 2/6 
wavelet. First, note that none of the evolved floating-point 
wavelet and scaling numbers changed sign relative to the 
original 2/6 wavelet. Second, note that the magnitude of 37 out 
of 40 of these evolved numbers (92.5%) decreased. 
Consistently, the largest magnitude changes occurred in the 
second wavelet number of the high-pass synthesis filter g2, as 
well as the first four scaling numbers of the low-pass synthesis 
filter h2; the last two scaling numbers of h2 remained virtually 
unchanged for all runs, while the first wavelet number of g2 
either changed little, or changed considerably less than the 
second wavelet number. This result gives insight into how the 
GA is learning to compensate for the detrimental effects of 
quantization. 

Fig. 7 shows the best-of-run wavelet and scaling numbers 
evolved from the integer 2/6 wavelet, and again shows the 
percentage change in the magnitude of each number relative to 
the corresponding value from that wavelet. Since images are 
reconstructed after transmission from MERs, it is unnecessary 
to reduce computational complexity on the receiving end (e.g., 

to reduce power consumption). Thus, we are free to evolve 
floating-point reconstruction filters to match the integer 2/6 
compressor. As we observed previously, 36 of the 40 wavelet 
and scaling numbers for these five evolved transforms have 
decreased in magnitude. Large changes in the first four scaling 
numbers of h2, and negligible changes to the last two scaling 
numbers of h2, also mirror our results for floating-point 
transforms. On the other hand, changes to g2 were inconsistent: 
in runs 2 and 4, greater changes occurred for the second 
wavelet number (as was observed for floating-point 
transforms), but in runs 1, 3, and 5, the largest magnitude 
changes occurred to the first wavelet number. In addition, all 
eight of the wavelet and scaling numbers have changed sign, in 
all five training runs. While it is well known that the behavior 
of commonly used wavelets (such as the 9/7 transform) is 
unaffected by the negation of all of the wavelet and scaling 
numbers defining the transforms, it is nevertheless quite 
surprising to find that all five of the runs evolving integer 
transforms negated all eight numbers, in light of the fact that 
none of the runs evolving floating-point transforms did so, and 
especially in light of the fact that the negation of any subset of 
these numbers will almost uniformly have a negative effect 
upon overall transform fitness. 

Fig. 8 shows the image MER24 [Fig. 5(a)] after 
reconstruction by the integer 2/6 wavelet, while Fig. 9 shows 
the same image after reconstruction by the best transform 
evolved from the integer 2/6. These images remind us that 
MSE reductions over even 9% are difficult to discern with the 
naked eye. To better visualize MSE reduction, we created 
difference images by first eliminating the smallest 40% of the 
intensity values from each reconstructed image, and then 
multiplying the result by 10. Fig. 10 is the difference image 
derived from Fig. 8, while Fig. 11 was similarly derived from 
Fig. 9. The vastly smaller numbers and reduced intensity of 
white dots in Fig. 11 emphasize the extent to which the evolved 
transform has reduced MSE in comparison to the integer 2/6 
wavelet.  

IV. COMPARATIVE RESULTS: D4 AND 9/7 
The results of the previous section demonstrated that it is 

possible to seed the initial population with randomly mutated 
copies of the 2/6 wavelet and evolve transforms that 
outperform the 2/6 for reconstruction of MER images 
previously compressed by the 2/6 under conditions subject to 
quantization error. This result raised the following question: is 
it possible to seed the population using a different wavelet and 
evolve a transform with even better performance on this class 
of images? 

To answer this question, two additional sets of experiments 
were performed; the first set seeded the population with 
randomly mutated copies of the Daubechies-4 (D4) wavelet 
inverse transform, whose wavelet and scaling numbers 
(rounded to 4 digits) are: 

h2 = {0.4830, 0.8365, 0.2241, -0.1294} 
g2 = {-0.1294, -0.2241, 0.8365, -0.4830} 

As with the 2/6 wavelet, 50 independent training runs were 
performed, with each run using a different training image. The  



 
 

(a) MER7 (best training image) 
 
  

 
 

(d) MER2 (fourth best) 

 
 

(b) MER34 (second best) 
 
 

 
 

(e) MER36 (fifth best) 
 

 
 

(c) MER42 (third best) 

Figure 4. The five best training images for Floating-Point Transforms. 
 

 

 
 

(a) MER24 (best training image) 
 
 

 
 

(d) MER36 (fourth best) 
 

 
 

(b) MER39 (second best) 
 
 

 
 

(e) MER17 (fifth best) 
 

 
 

(c) MER47 (third best)

Figure 5. The five best training images for Integer Transforms. 



 
 

Run Evolved Numbers (% change in magnitude) 
1  h2 = [0.5045 (-28.7%), -0.5278 (-25.4%), 0.0338 (-61.8%), 0.0675 (-23.6%), 0.7061 (-0.14%), 0.7061 (-0.14%)] 

g2 = [-0.0870 (-1.57%), -0.0212 (-76.01%)] 
2   h2 = [0.5013 (-29.1%), -0.5127 (-27.5%), 0.0378 (-57.2%), 0.1051 (18.9%), 0.7062 (-0.13%), 0.7058 (-0.18%)] 

g2 = [-0.0895 (1.26%), -0.0572 (-35.3%)] 
3   h2 = [0.5067 (-28.3%), -0.4885 (-30.9%), 0.0494 (-44.1%), 0.0715 (-19.1%), 0.7050 (-0.30%), 0.7045 (-0.37%)] 

g2 = [-0.0632 (-28.4971%), -0.0341 (-61.4201%)] 
4   h2 = [0.5262 (-25.6%), -0.5118 (-27.6%), 0.0890 (0.69%), 0.0489 (-44.7%), 0.7058 (-0.18%), 0.7057 (-0.20%)] 

g2 = [-0.0829 (-6.21%), -0.0468 (-47.05%)] 
5   h2 = [0.4719 (-33.3%), -0.5008 (-29.2%), 0.0571 (-35.4%), 0.0840 (-4.96%), 0.7069 (-0.03%), 0.7047 (-0.34%)] 

g2 = [-0.0736 (-16.73%), -0.0619 (-29.97%)] 
 

Figure 6. Wavelet and Scaling Numbers Evolved from Floating-point Transforms (% Magnitude Change from 2/6).
 
 

 
Run  Evolved Numbers (% change in magnitude) 

1  h2 = [-0.6852 (-31.5%), 0.6812 (-31.9%), -0.0639 (-48.9%), -0.1285 (2.80%), -0.4991 (-0.18%), -0.4994 (-0.12%)] 
g2 = [0.1031 (-17.52%), 0.1214 (-2.88%)] 

2   h2 = [-0.7071 (-29.3%), 0.6959 (-30.4%), -0.1110 (-11.2%), -0.0752 (-39.8%), -0.4999 (-0.02%), -0.4998 (-0.04%)] 
g2 = [0.1249 (-0.08%), 0.1119 (-10.48%)] 

3   h2 = [-0.7288 (-27.1%), 0.7304 (-27.0%), -0.1068 (-14.6%), -0.1059 (-15.3%), -0.4986 (-0.28%), -0.4997 (-0.06%)] 
g2 = [0.0650 (-48.00%), 0.0984 (-21.28%)] 

4   h2 = [-0.6374 (-36.3%), 0.6493 (-35.1%), -0.0391 (-68.7%), -0.1526 (22.1%), -0.5004 (0.08%), -0.4984 (-0.32%)] 
g2 = [0.1114 (-10.88%), 0.0745 (-40.40%)] 

5   h2 = [-0.6852 (-31.5%), 0.7394 (-26.1%), -0.0845 (-32.4%), -0.1597 (27.8%), -0.4991 (-0.18%), -0.4999 (-0.02%)] 
g2 = [0.0550 (-56.00%), 0.1123 (-10.16%)] 

 
 

Figure 7. Wavelet and Scaling Numbers Evolved from Integer Transforms (% Magnitude Change from 2/6). 
 
 
 

 
 

Figure 8. A typical MER image (MER24) reconstructed by the integer 
2/6 transform. 

 
 

Figure 9. The same image reconstructed by the best evolved transform. 
MSE reductions as large as 9% are very difficult to see with the naked 

eye.  
 
 



 
 

Figure 10. The difference image for the integer 2/6. Error is proportional to the number and intensity of lighter dots. 
 
 

 
 

Figure 11. The difference image for the best transform evolved from the integer 2/6. The much smaller number and reduced intensity of dots is 
indicative of substantially reduced MSE. 

 



best-of-run transforms were subsequently tested against the 
remaining 49 images from the test set. In comparison to the 
three best transforms evolved using the integer 2/6 wavelet to 
seed the initial population, the best transform evolved from the 
D4 introduced an average of at least 25% greater MSE. This 
result clearly indicates that the integer 2/6 is by far a better 
choice than the D4 for seeding the initial population in order 
to evolve a superior MER image reconstruction transform. 

The second set of experiments seeded the initial population 
using 9/7 inverse transform, whose wavelet and scaling 
numbers (rounded to 4 digits) are: 

h2 = [-0.0645, -0.0407, 0.4181, 0.7885, 0.4181, 
  -0.0407, -0.0645] 

g2 = [0.0378, 0.0239, -0.1106, -0.3774, 0.8527,-0.3774,  
  -0.1106, 0.0239, 0.0378] 

50 best-of-run transforms were tested against 50 MER images. 
The best transform evolved from the 9/7 introduced at least 
20% greater average MSE into MER images than the three 
best transforms evolved from the integer 2/6. This result 
would again seem to indicate the superiority of the integer 2/6 
as a starting point for evolving a MER image reconstruction 
transform; however, an additional factor should be considered: 
although the scale of each training run (M = 50, G = 500) 
appears to have been sufficient to allow transforms evolved 
from either the integer 2/6 or D4 wavelet to converge towards 
an optimized solution, it is plausible that larger runs may be 
necessary to evolve transforms from the much more complex 
9/7. The much greater variation in the wavelet and scaling 
numbers of transforms evolved from the 9/7 may be the result 
of the problem’s higher dimensionality.  

V. CONCLUSIONS AND FUTURE RESEARCH 
The research described in this paper clearly establishes that 
GAs are capable of evolving transforms that outperform the 
most commonly used ICER wavelet for the reconstruction of 
MER images under conditions subject to quantization error. At 
64:1 quantization, the best evolved floating-point transform 
reduced MSE by an average of 6.60% (0.297 dB) and 9.35% 
(0.426 dB), respectively, in comparison to floating-point and 
integer versions of the 2/6 wavelet.  

As a next step, the wavelet and scaling numbers of the 2/6 
wavelet used by the software implementation of ICER [8] 
should be replaced with those of the best-of-run evolved 
transform.  The resulting system should then be applied to 
actual ICER images in order to further validate the results of 
this study. 

It is likely that the relatively small scale of the runs 
performed for this study (M = 50, G = 500), and the use of a 
single training image per run, limited the performance 
enhancement of best-of-run transforms in comparison to 
the2/6 wavelets. Future research will include much larger 
populations, longer training runs, and various combinations of 
two or more training images in order to achieve greater 
improvements. In addition, evolving larger populations for a 
much greater number of generations may allow transforms 

evolved from the 9/7 wavelet to achieve reconstruction 
performance comparable to transforms evolved from the 2/6.  

As mentioned above, an advantage to the approach 
described in this paper is that it requires only the 
reconstruction filter to be modified, i.e., no changes to 
deployed image compressors are necessary. Thus, this 
approach is especially useful for deployed systems in which 
the compressor has been implemented in hardware. 
Nevertheless, our prior experience with photographs [2], 
fingerprints [3], and satellite images [4] demonstrated that 
additional MSE reduction may be achieved by simultaneously 
evolving wavelet and scaling numbers for both the forward 
and inverse transform. Future research should apply this 
approach to deep space images. Evolving both compression 
and reconstruction transforms will be particularly beneficial 
for missions (such as the MERs) that use a software 
implementation of ICER for all lossy image compression [8]. 
In addition, the modified GA should allow the user to evolve 
either integer or floating-point compression transforms. 

For this research, lossy compression was achieved using 
64:1 uniform scalar quantization. Future research should 
specifically address the “subband quantization with a dead 
zone” scheme [7] employed on MER missions, and other more 
commonly used quantization algorithms [6]. In addition, the 
transforms evolved during this research performed a single 
stage of decomposition; however, most wavelet-based image 
compression systems (including ICER) use the MRA scheme 
[9] to achieve much greater compression. Future research 
should extend the current GA to evolve MRA transforms 
having different sets of wavelet and scaling numbers for each 
compression and reconstruction transform at each stage of 
decomposition [11]. 

As mentioned above, the ICER image compressor is used 
for other NASA missions, including STEREO [12] and EO-1 
[13]. Future research should investigate whether our approach 
could be extended to support these missions. In particular, we 
should attempt to identify techniques for improved 
compression and reconstruction of multispectral and 
hyperspectral images.  
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